miR-30-5p Regulates Muscle Differentiation and Alternative Splicing of Muscle-Related Genes by Targeting MBNL
نویسندگان
چکیده
MicroRNAs (miRNAs), a class of single stranded, small (~22 nucleotides), non-coding RNAs, play an important role in muscle development. We focused on the role of the miR-30-5p family during bovine muscle development from previous high-throughput sequencing results and analyzed their expression profiles. MHC and MyoG mRNAs expression as well as their proteins were suppressed in differentiated C2C12 cells, suggesting the importance of miR-30-5p in muscle development. MBNL, the candidate target of miR-30-5p, is an alternative splicing regulation factor. MBNL1 and MBNL3 have opposite effects on muscle differentiation. Our results confirmed that miR-30a-5p and miR-30e-5p repress the expression of MBNL1, MBNL2 and MBNL3, whereas miR-30b-5p inhibits MBNL1 and MBNL2 expression. This provides direct evidence that MBNL expression can be flexibly regulated by miR-30-5p. Previous studies showed that MBNL1 promotes exon inclusion of two muscle-related genes (Trim55 and INSR). Through RNA splicing studies, we found that miR-30-5p had an effect on their alternative splicing, which means miR-30-5p via MBNL1 could be integrated into muscle signaling pathways in which INSR or Trim55 are located. In conclusion, miR-30-5p could inhibit muscle cell differentiation and regulate the alternative splicing of Trim55 and INSR by targeting MBNL. These results promote the understanding of the function of miRNAs in muscle development.
منابع مشابه
MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development.
Alternative pre-mRNA splicing determines many changes in gene expression during development. Two regulators known to control splicing patterns during neuron and muscle differentiation are the polypyrimidine tract-binding protein (PTB) and its neuronal homolog nPTB. These proteins repress certain exons in early myoblasts, but upon differentiation of mature myotubes PTB/nPTB expression is reduced...
متن کاملmiR-320 regulates inflammation in EAE through interference with TGF-β signaling pathway
Background: MicroRNAs are small noncoding RNAs that regulate gene expression and involve in many cellular and physiological mechanisems. Recent studies have revealed that dysregulation of microRNAs might contribute to autoimmune disorders such as multiple sclerosis. Based on these findings, we examined the potential role of miR-320 isoforms, miR-320-3p and miR-320-5p, in the context of autoimmu...
متن کاملmiR-18a-5p MicroRNA Increases Vascular Smooth Muscle Cell Differentiation by Downregulating Syndecan4
BACKGROUND AND OBJECTIVES Differentiation and de-differentiation of vascular smooth muscle cells (VSMCs) are important events in atherosclerosis and restenosis after angioplasty. MicroRNAs are considered a key regulator in cellular processes such as differentiation, proliferation, and apoptosis. Here, we report the role of new miR-18a-5p microRNA and its downstream target genes in VSMCs and in ...
متن کاملTranscriptome changes induced by toxic RNA in myotonic dystrophy
RNA-binding proteins play critical roles in RNA alternative processing during tissue development and maintenance. A striking example of the importance of developmental functions of these proteins is provided by the muscleblindlike (MBNL) protein family, which function as alternative splicing factors at multiple developmental stages from embryonic stem cell differentiation to postnatal switches ...
متن کاملProgressive impairment of muscle regeneration in muscleblind-like 3 isoform knockout mice.
The muscleblind-like (MBNL) genes encode alternative splicing factors that are essential for the postnatal development of multiple tissues, and the inhibition of MBNL activity by toxic C(C)UG repeat RNAs is a major pathogenic feature of the neuromuscular disease myotonic dystrophy. While MBNL1 controls fetal-to-adult splicing transitions in muscle and MBNL2 serves a similar role in the brain, t...
متن کامل